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THE METHOD OF SHOVING COORDINATES IN PROBLEMS 
OF CONTINUOUS MEDIUM MECHANICS* 

A.E. NHDVEDEV and V.M. FOMIN 

The method of difference grid construction is used in conjunction withthesolution 
of a physical problem /l/ for solving elastoplastic and gasdynamic problems. Two 
different variational criteria of coordinate grid selection are considered. The 
first is based on the investigation of a functional dependent on the flow velocity 
and motion of moving curvilinear coordinates. An estimate is obtained of the de- 
pendence of curvilinear coordinate behavior on the local flow properties.Thesecond 
criterion is based on the dependence of the functional on the difference scheme 
variance, and is obtained using the properties of solution of the Hopf equation, as 
a model. This makes it possible to take into account not only the properties of 
solution but, also, those of the difference scheme. 

In solving multidimensional problems of mechanics of continuous media with free boundar- 
ies and large deformations it is necessary to use numerical algorithms that take intoaccount 
the a priori known basic singularities of the solution. A method of difference grid con- 
struction in conjunction with the solution of the problem was proposed in /l/, and was later 
applied in /2,3/ for solving some very simple problems of gasdynamics. 

1. Equations of elastoplasticity in moving curvilinear coordinates and the 
variational criterion of the construction of a grid dependent on the flow. 
Consider the one-to-one mapping X = x(t, q) of space G = (t,ql,q*,qY} onto space X = {t,$,z~,~"}, 
which retains the separation of space coordinates and time. Mapping x = x(t, q) defines the 
moving curvilinear coordinate grid , and vector w =&/at of its velocity in space X, 

We use the notation 

where summation is carried out over the recurring index. The equations defining the three- 
dimensional motion of a perfect elastoplastic medium are in Cartesian coordinates in X of the 
form 

%+ +J (PUk) = 0, qg + $(pduki P6,k-LPk)=0 

~~p(“+~)~.t~lpllk(e+~+$)-~~kLl~~=O 
. . 

~-~[~(~'~jk+Lljbik)-_~k6jf]=0 (i,j,k=1,2,3) 

where n is the velocity vector, p is the shear modulus , pressure P = P (p,e) is a known func- 
tion, and Sij are components of the stress tensor deviator. 

We use the vises form S'jS'j,< Y3e,20f plasticity condition. 
Representing the laws of conservation for the first Ca and second E@ rank tensors /6/, 

where in this case 

and the formula for the material derivative in coordinates G, we obtain in moving curvi- 
linear coordinates the following equations of perfect elastoplasticity: 
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t1..1: 

g” = b,‘bt’, gij =5 o,‘ajt, vi = db,‘, a1 = wtbt’ 
5” = S”b;b,‘. A = det }I al/ (i, j, k, I, m, n, r, s = 1, 2, 3) 

This mapping is one-to-one , when the Jacobian of transformation A = detIIujiIj # 0. In the 
system of Eqs.tl.1) it is generally necessary to specify the vector function w = acit . But, 
when solving specific boundary value problems by the method of finite differences, it is con- 
venient to consider the determination of w in the course of solution for each fixed instant 
of time. 

With this in view we apply the idea of /l/ and determine the vector function w using the 
variational principle. We compose the functional 

CD(w) = s F&-2, (1.2) 
QI 

F=(w-$ u)l+[el(divw)'+elP+eS(rotw)'J x [(pT$--Fdivg)+c] + [k,divw-div ($ u)]' (1.3) 

where Q, is the region occupied by the medium at the instant of time t , and e,, szr eS, C. k, are 
nonnegative constant normalizing multipliers, and g is the heat influx vector. 

The curvilinear coordinates q of form q = P(x)are selected at the initial instantoftime 
t = 0 depending on the region 51, occupied by the medium. 

The first term in (1.3) defines the deviation from Lagrangian coordinates. The second 
term is the product of two factors of which the first is the sum of squares of volume varia- 
tion (divn)' of shear 

and of rotation (rot w)? of a coordinate grid cell, an d the second defines energy dissipation 
in the medium. The second term stipulates that the coordinate grid deformation is to be the 
lesser the higher is the energy dissipation in the medium. The last term in (1.3) defines the 
coordinate grid density in the region of velocity gradients U. 

The problem of determination of the unknown functionw can be formulated thus: determine 
among the class of admissible functions in region Qt(t,ql,qz,qJ) that which yields the minimum of 
functional (1.2) with the differential condition (1.1) and the boundary condition 

wlea,=(aY"lax)UIw, 

Note that the problem of determining the VeCtOr functionw for gasdynamic flows is sim- 

ilarly formulated, except that the differential conditions (1.1) are in this case of 

the form /1,6/ 
$- -!- +pA(v'-c+=O (1.4) 

c+pA (v‘ - w’) 
at + -$ [pA (vi -3) (vt 

da’ 
--~)]+AP ~+~(~t-~t)+"tvtrtll+$~ -AoF ’ 

[ 1 
wje+g, “turn \ 

at 
m--i-) ++[Ap (e+g, ut’m) 1.- 2 

X (v'-(I+)+ AP+I~Q~~&~ 



Moving coordinates in problems of mechanics 461 

e = e (P, p) (i, j, k, 1, m = i, 2,3) 

where F is the vector of mass forces. 

2. Examples of coordinate grid dependence on flow properties. Example 1. 
Consider one-dimensional unsteady flows of perfect gas free of shock waves when pTdSldt +divg 
5% 0, i.e. without energy dissipation. The Euler equation which ensures the minimum of func- 

tional (1.21 under conditions (1.41 with i,j,k.I,m=l in region zaft)~<xds,(t),t,,<t,<t, is 
of the form 

a2w, - w = k,cp, - ‘p - a2 

(P==~~fXA a*=(E1+4Qc+IZ* 

(2.1) 

with boundary conditions 

'"IGW = cp Jr&) = cpo 01, w &,CO = rp Jl,W = R(t) 

Solving Eq.fZ.l) we obtain 

When k, = a*, the following theorem is valid. 

Theorem. When in the calculation of one-dimensional unsteady flows free of shock waves 
of perfect gas the normalizing multipliers satisfy the conditions (~1 +4&l< 'fdl,,k, ='i,f'I, 

0 -k(e, +&#'i, the Lagrangian coordinates are optimal, i.e. w(z, t)=(p(z,t). The coordin- 
ate grid z =s(t,q) is determined by solving the equation with initial condition dx/dt=w(s, t), 
z 114, = ‘y-l 63). 

The Jacobian of transformation A= A (x,t) then satisfies the equation with initial con- 
dition 

(2.2) 

Solving Eq. (2.2) we obtain 

ew I& ft) - fp (~0fl 
A = V’ t+ - th (f) - h Vdl) 

fr (t) = 1 m”(;fft)’ t, dt 

(2.3) 

where fi(t) is determined by the solution of equation df~/dt=w~,,~~. 
It follows from (2.3) that in the region of solution A(z,~)J:@. 

Example 2. When solving equations of perfect gasdynamics in the presence of shockwaves 
the scheme of rippling through computation is commonly used with the addition pseudoviscosity 
supplement to the pressure 

P, = P 4-y aui-ax 

wherey is a constant coefficient. The energy dissipation in the gas (without heat influx) is 
then defined by formula y(&/&)*. 

Taking this into account, we express Euler's equation for the minimum of functional 11.2) 
under conditions (1.41 in region (zO(t)<z< z1 (t),O< t<t*) and in coordinates X in the form 

hw,, _t h,w, - w = k,u_ - u - h (2.4) 
h = y8&B + a*, E = e1 +4e,, a2 =ce + k,? 

with boundary conditions 

1L'LW = ~ktt = uo(G w l*<t, = Ujz@) = z-41 (t) 
Let at a fixed instant of time t the specified solution II&~) be a function thatistwice 

ContinuouslY differentiable with respect to the variable z over the segment z~ [zo(t),zI (t)], 
To investigate the behavior of function w (x,t) we introduce the new variable 
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with 5 varying from 0 to 1. Let 

I. 

where Y(&) is the new unknown function that satisfies the equation with the boundary conditions 

ytt = y Y -!- ,:;; ; -((h--k*) v/h-g+ 7 

Y10)==0, ,w=-+s ‘fh~d+, + llo 

0 

(2.5) 

If we set k, Q a’, i.e. ke2 - k, + ce > 0 , then h- k,>O and the integral in the right-hand 
side of Eq.(2.51 is a nonnegative function. Estimating the right-hand side of Eq.(2.51 from 
above and below, we obtain respective estimates for function w(r) of form w_(&) <w(E)< w+(E), 
where 

w-(5)=u(~)+ho[(chua--)~-(cho~--~)] + --+((E- 

h, = max h (E), h, = min h (&), u* = h,‘V& (I,, = &,‘Wf? 

Y,(E) = (h, - k,) (h, -a’)‘/*- (h - k,) (h - a*)‘/* 

PO (&) = (h, - k,) (h, - a*)“’ - (h - k,) (h - a*)‘[: 

The above reasoning enables us to formulate the following theorem. 

Theorem. In the calculation of one-dimensional flows of perfect gas with pseudoviscos- 
ity added to pressure p,= P+yau/& the estimate 

co_ (5 (I)) I< (L'(r) -< W, (E (r)) 

of the rate of contraction of moving curvilinear coordinates is valid for the known flow u (I) 
with the constraints introduced above, p rovided the normalizing multipliers in functional (1.2) 
satisfy the inequality keP -k, +ce > 0. 

Remark. For one-dimensional equations that define the behavior of an elastoplastic 
medium Euler's equation (2.4) of the minimum of functional (1.2) retains its form, exceptthat 

au 
h 7.. - zx dt e + CE i k,? 

where o, is the stress tensor component. 
By a suitable selection of constants c. E, k it is possible to have h(z) >O for 20(f) <r< 

+,(t), hence this theorem is also valid for elastoplastic flows. 

Example 3. Consider the construction of functional (1.2) based on the minimization of 
the error of solution of the basic boundary value problem. To simplify exposition the invest- 

igation is carried out on the example of solution of the equation 

*+ug :.o (2.6) 

which has the self-similar solution U=I;I in the domain 

D (2, (I) Q 2 d I* (09 0 <to < t < m) 

In curvilinear coordinates Eq.(2.6) is of the form 

where z=~(f, q) is the unknown moving curvilinear grid. To solve Eq.(2.7) we use the Lax type 

difference scheme whose first differential approximation can be represented in the form 

which enables us to represent functional (1.2) as 
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(2.8) 

where h and T are the space and time difference pitches, respectively. 
Hence for the determination of z=~(c,q) we can formulate the following problem: amongthe 

class of admissible functions r(t;q) determine in the domain Q(p(t)<q<d,(t).O<t,, <f < DJ) that 
which provides the minimum of functional (2.8) with the differential constraint (2.7) andthe 
boundary and initial conditions 

t = 1m I = 9, p = qi(L), &/at = L( (i = 1, 2) 

where gi((1) is obtained from the solution of equations with initial condition 

az (t?Q) 
dt = u ct. 2 (t,gi)), = (t> 'li (0) = zi (t) 1 t = t,, li (lo) = 4i (to) 

Applying the standard procedure of variation of functional (2.8) and eliminating the 
Lagrangian multiplier, we obtain Euler's equation 

For the known solution u=z/l we have the equation with boundary and initial conditions 

(2.10) 

Solving problem (2.10) we obtain 

= (t, 9) = @/to (2.11) 

Then w (.t, t) = z/f, A (z. I) = t/4 + 0. 
Solution (2.11) shows that the curvilinear coordinates coincide with the Lagrangian co- 

ordinates z = +or/tO. 
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